வியாழன், 31 ஆகஸ்ட், 2017

கல்வித் தந்தைகள் அதிர்ச்சி. இதற்கு அப்புறமும்
இடங்கள் நிரம்பவில்லை. எனவே கட்டணம் இன்னும்
குறைய வாய்ப்பு. தகவல் ஆதாரம்: The Hindu 31.08.2017
முதல் பக்கம்.

ரூ 41.98 லட்சம் எங்கே? ரூ 6.32 லட்சம் எங்கே?
கிட்டத்தட்ட ஏழு மடங்கு குறைவு.

எடப்பாடி கவிழ்ந்தால், அடுத்து ஆட்சி அமைக்க
தளபதியைத்தான் ஆளுநர் அழைக்க வேண்டும்.
இதுதான் அரசமைப்புச் சட்டம். அழைப்பை ஏற்று
ஆட்சி அமைப்பது தளபதியின் கடமை.

5 ஆண்டுக்கும் சேர்த்து மொத்தக்  கட்டணம்
(ரூ 6.32 x 5= 31.60 ) ரூ 32 லட்சம். இது இன்று 2017ல்.
ஆனால் கடந்த ஆண்டுகளில் முதல் ஆண்டுக்கே
ரூ 41.98 லட்சம். ஐந்து ஆண்டுக்கும் சேர்த்து ரூ 2 கோடி.
(5 x 41.98= 209.90 லட்சம் = 2 கோடி) , நீட் தேர்வு காரணமாக
ரூ 2கோடி கட்டணம் வெறும் ரூ 32 லட்சமாக
ஆகி விட்டது. இதன் காரணமாக கல்வித் தந்தைகளின்
கொள்ளை லாபம் வெகுவாகக் குறைந்துள்ளது.

இது முக்கியத்துவம் வாய்ந்த செய்தி என்பதால்
ஆங்கில இந்து ஏடு (The Hindu) முதல் பக்கத்திலேயே
வெளியிட்டுள்ளது.
 
இந்தியா முழுவதும் கவுன்சலிங் கடைசி தேதி 31 ஆகஸ்ட்.
தமிழ்நாட்டில் செப்டம்பர் 4 வரை கடைசி தேதி என்று
உச்சநீதி மன்றம் அறிவித்து உள்ளது. எனவே இறுதி நிலவரம்
இன்னும் வரவில்லை. வந்தவுடன் எழுதப்படும்.
மற்றப்படி, இன்றைய தமிழக நிலவரம் பற்றி
(இது இறுதி நிலவரம் அல்ல) அடுத்த பதிவுகளில்
காணலாம்.

the 3 planes of our astronomical neighbourhood
-----------------------------------------------------------------
From what I can see... there are three primary "planes" that we use as baselines to measure the locations of other astronomical bodies lying in space. The celestial sphere, which is grounded on the celestial equator, this is dictated by the Earth's equator. The ecliptic plane, which is grounded on the Earth's orbit, or as I like to call it the Sun's default equator. And finally the galactic plane, which is kinda self explanatory.

I'm sure many of you all know this, I'm not being condescending, I'm just running through this so I can establish just what I do or do not understand.

Now... I wanted to use Sketchup to make a 3D starmap of local space. But I got stuck on the angles that seperate the three planes. I know that the equator is 23.45 degrees off of the ecliptic, and that the galactic is supposedly 60 degrees off of the ecliptic. The problem is, I don't know... in which direction the tilt is when considering all three.
High resolution observations of the Galactic Center at radio wavelengths have revealed a complex structure of ionized gas called the 'mini-spiral'. The mini-spiral is broken down into individual components including the Northern Arm, Western Arc and Eastern Arm (see below). The mini-spiral is surrounded by a thick ring of molecular material called the Circumnuclear Disk (CND) which is from 2.5 to 4.8 parsecs (50 to 95 arcseconds) in size with an inferred inclination of 60 degrees assuming a circular structure (Gusten et al 1987). It is primarily seen in radio molecular emission from carbon monoxide (CO) or hydrogen cyanide (HCN) molecules.

The motion of the gas comprising the mini-spiral is determined using the Doppler shift of emission lines including the NeII and Bracket gamma hydrogen lines. These studies show that the gas along the Nothern Arm is falling in toward or orbiting around Sgr A*. There are many ideas about the origin of the mini-spiral. Some believe that the it is created by the same type of gravitational perturbation which forms the pretty pattern observed in spiral galaxies. One theory explaining the motion of the gas in the mini-spiral suggests the gas is in a Keplerian orbit around the supermassive black hole. The other interpretation is that the gas is not bound to the galactic center and therefore is on a hyperbolic orbit. Another scenario for the formation of the mini-spiral involves the collision of gas cloudlets within the CND which causes the clouds the lose angular momentum and fall in towards Sgr A*. Indeed the CND appears to have a clumpy structure and the ionized filaments along the mini-spiral are coincident with the inner edge of the CND and appear to terminate in the CND which, in turn, has an impression at the termination point. The CND is not believed to be in dynamical equilibrium meaning that if cloud collisions within the CND are responsible for creating the mini-spiral then material must be provided to replenish the CND. Some of the material could be coming from a nearby Giant Molecular Cloud (GMC) called the "20 km/s cloud".
-------------------------------------------------------------------------------------------------------------
60 degree
So what’s the problem? Well, if the solar wind was completely gone, galactic cosmic rays should be streaming in from all directions. Instead, Voyager found them coming preferentially from one direction. Furthermore, even though the solar particles had dropped off, the probe hasn’t measured any real change in the magnetic fields around it. That's hard to explain because the galaxy’s magnetic field is thought to be inclined 60 degrees from the sun’s field.
-----------------------------------------------------
Does our solar system rotate parallel or perpendicular to the galactic disc?
Neither. You have created a false dilemma. There are lots and lots of other possibilities; in fact, there are an uncountably infinite number of other possibilities. The ecliptic plane is inclined at about a 60 degree angle with respect to the galactic plane. With the possible exception of systems fairly close to the galactic core, the orientation of planetary systems with respect to the galaxy is more or less random.
-----------------------------------------------------------
Assuming our solar system is at a 60degree angle in respect to the galactic plane, the planets would still not trail behind the sun like they do in the video. The theory of relativity(as well as our observation of the planets in our solar system) show that the sun's gravity acting on the planets are enough to form a flat plane. If you want to know why things usually flatten out google that, but the short explanation is that no matter what the original conditions are, collisions/gravity will spin the objects into more of a disk formation. This is why we don't see spherical galaxies, and why the majority of our solar system is relatively flat, or on a much smaller scale why the rings around Saturn are so flat. The speed of the solar system going through the galaxy would not cause the planets to trail behind because masses that are in orbit aren't just trailing along holding on by a 
thread they are bound rather strongly.
----------------------
Does our solar system rotate parallel or perpendicular to the direction of the expansion of the universe?
The answer is neither. There is no "direction" to the universe's expansion. In technical terms, it is simply a real valued, time varying parameter - the so called "scale factor" - in the FLRW metric.
In practical terms, a lower dimensional mind picture might help you. Imagine a rubber 2-sphere as a model for a two spatial dimension universe, and we draw little pictures on the outside: we'll make them look like galaxies if you like. In particular, draw a straight line segment on the surface. Then we blow the sphere slowly up by pumping air into it. Now, what is the direction of the expansion relative to the line segment's direction? If the expansion is isotropic and the sphere just becomes an every swelling bigger sphere, the proper distances between pairs of points joined by a line segment in any direction increases at the same rate. The expansion is uniform and has no preferred direction.


As a light-producing body in space, say a star, moves away from the earth and the perceived frequency of light waves decreases as the waves “stretch out”, the light we see will be redder. Thus the name “redshift.”
However, the differences in light frequency are often so miniscule that they are hard to observe. This is where spectroscopy comes into play. Astronomers rely on the redshift observable in a star or galaxy’s spectrograph. The chemical composition of stellar bodies can be recorded as tiny black lines in a spectral analysis of the colors we can see when looking at the bodies. The resulting diagram is known as a spectrograph. Since elements are known to absorb certain light spectra, or colors, looking at the places where no color is received (the black lines) can tell us what elements exist in the star. Since these lines have consistent locations in the color spectrum based on the elements present, if they are all shifted down the spectrum from their expected positions, the star is said to be redshifted and we can tell that it is moving away.

Why not just call redshift the Doppler Effect?

The Doppler Effect refers specifically to the relationship between a stationary and a moving object and is, therefore, dependent on velocity. The most common type of redshift (Type II), however, results between two stationary objects and is dependent on the distance between them. The space between any two cosmological objects is expanding, leading to an increase in wavelength and decrease in frequency of light that traverses that space.
That is not to say that redshift does not result from objects moving relative to one another as well. In fact, Type I redshift results from the motion of galaxies relative to their neighboring galaxies. As our Milky Way heads on collision course with the relatively nearby Andromeda galaxy, the resulting increase in frequency and decrease in wavelength from our perspective as the galaxies draw closer is colloquially known as “blueshift.” The third type of redshift is much subtler. Gravitational, or Type III, redshift results as gravitational forces from massive special bodies cause the light to shift ever so slightly, warping it or causing it to deviate from its course in an observable way. The verification of gravity’s effect on light also helped validate Einstein’s theory of general relativity.

Why does redshift matter?

Knowing the length of different colored light waves allows astronomers to calculate the distance of an object from earth, as well as determine whether it is moving relatively away from or towards us. Other than the obvious application of measuring distance to deep-space objects, redshift is used to map the expansion of our universe, to determine the relative age of galaxies, and even to find exoplanets. It was through the Edwin Hubble’s observation that the redshifts for objects were larger the farther away they were (implying that the further away a galaxy was, the faster it was moving away from us), that cosmologists came to the initial conclusion that our universe was expanding uniformly. If a star is alternately exhibiting redshift and blueshift (moving away from and then towards us) then an outside gravitational force must be acting upon it. This “wiggle” in a star indicates that it is being orbited by a planet which is exerting a gravitational force pulling the star ever so slightly away from its center of rotation. A tried and true method proving its mettle even at the cutting edge of science, spectrographic redshift analysis was also just used to find the most distant galaxy known to date, a 13.2 billion year old galaxy towards the outer edges of the known universe. 
The sun is one of hundreds of billion of stars in our galaxy, the Milky Way. The galaxy is composed of gaseous interstellar medium, neutral or ionized, sometimes concentrated into dense gas clouds made up of atoms molecules, and dust. All of the matter -- gas, dust, and stars -- rotate around a central axis perpendicular to the galactic plane. The centrifugal force caused by the rotation balances out the gravitational force, which draw all the matter toward the center.
The mass is located within the circle of the Sun's orbit through the galaxy is about 100 billion times the mass of the Sun. Because the Sun is about average in mass, astronomers have concluded that the galaxy contains about 100 billion stars within its disk.
All stars in the galaxy rotate around a galactic center but not with the same period. Stars at the center have a shorter period than those farther out. The Sun is located in the outer part of the galaxy. The speed of the solar system due to the galactic rotation is about 220 km/s. The disk of stars in the Milky Way is about 100,000 light years across and the sun is located about 30,000 light years from the galaxy's center. Based on a distance of 30,000 light years and a speed of 220 km/s, the Sun's orbit around the center of the Milky Way once every 225 million years. The period of time is called a cosmic year. The Sun has orbited the galaxy, more than 20 times during its 5 billion year lifetime. The motions of the period are studied by measuring the positions of lines in the galaxy spectra.

Bibliographic EntryResult
(w/surrounding text)
Standardized
Result
Hess, Frances. Earth Science. New York: Glencoe Mc Graw-Hill, 2002: 348."The Sun's orbit around the galaxy is about 220 km/s and thus its orbital period is about 240 million years."240 million years
Morris, Mark. "The Milky Way." The World Book Encyclopedia, 2002, Vol. 13: 551."The Sun's completes an almost circular orbit of the center (of the galaxy) about every 250 million years."250 million years
Croswell, Ken. The Alchemy of the Heavens Searching for the meaning of the Milky Way. New York: Doubleday, 1995: 2."The Galaxy is so huge that the Sun requires 230 million years to complete one orbit around the Milky Way's center."230 million years
Moore, Patrick. The International Encyclopedia of Astronomy. New York: Mitchell Beazly Publishers, 1981: 45."Cosmic Year: the time taken for one complete revolution of the Sun around the entire center of the galaxy; about 225 million years."225 million years
Kerrod, Robin. Encyclopedia of Science Heavens 2. New York: MacMillian Reference USA, 1997: 35."The Sun takes 225 million Earth years to make one rotation. This period of time is called a cosmic year."225 million years
The galactic year, also known as a cosmic year, is the duration of time required for the Sun to orbit once around the center of the Milky Way Galaxy.[1] Estimates of the length of one orbit range from 225 to 250 million terrestrial years.[2] The Solar System is traveling at an average speed of 828,000 km/h (230 km/s) or 514,000 mph (143 mi/s) within its trajectory around the galactic center,[3] a speed at which an object could circumnavigate the Earth's equator in 2 minutes and 54 seconds; that speed corresponds to approximately one 1300th of the speed of light.


The galactic year provides a conveniently usable unit for depicting cosmic and geological time periods together. By contrast, a "billion-year" scale does not allow for useful discrimination between geologic events, and a "million-year" scale requires some rather large numbers.[4]

The following list assumes that 1 galactic year is 225 million years.
About 61.32 galactic years agoBig Bang
About 54 galactic years agoBirth of the Milky Way
20.44 galactic years agoBirth of the Sun
17–18 galactic years agoOceans appear on Earth
16.889 galactic years agoLife begins on Earth
15.555 galactic years agoProkaryotes appear
12 galactic years agoBacteria appear
10 galactic years agoStable continents appear
6.666 galactic years agoEukaryotes appear
6.8 galactic years agoMulticellular organisms appear
2.4 galactic years agoCambrian explosion occurs
2 galactic years agoThe first brain structure appeared in worms
1.11 galactic year agoPermian–Triassic extinction event
0.2935 galactic years agoCretaceous–Paleogene extinction event
0.001 galactic years agoAppearance of modern humans
Present day
1 galactic year from nowAll the continents on Earth may fuse into a supercontinent. Three potential arrangements of this configuration have been dubbed Amasia, Novopangaea, and Pangaea Ultima[5]
2–3 galactic years from nowTidal acceleration moves the Moon far enough from Earth that total solar eclipses are no longer possible
4 galactic years from nowCarbon dioxide levels fall to the point at which C4 photosynthesis is no longer possible. Multicellular life dies out[6]
12 galactic years from nowThe Earth's magnetic field shuts down [7] and charged particles emanating from the Sun gradually deplete the atmosphere [8]
15 galactic years from nowSurface conditions on Earth are comparable to those on Venus today
22 galactic years from nowThe Milky Way and Andromeda Galaxy begin to collide
25 galactic years from nowSun ejects a planetary nebula, leaving behind a white dwarf
30 galactic years from nowThe Milky Way and Andromeda will complete their merger into a giant elliptical galaxy called Milkomeda or Milkdromeda [9]
500 galactic years from nowThe Universe's expansion causes all galaxies beyond the Milky Way's Local Group to disappear beyond the cosmic light horizon, removing them from the observable universe [10]
2000 galactic years from nowMedian Point of the Local Group of 47 galaxies[11] will coalesce into a single large galaxy 
சுடோகு என்னும் எளிய கணிதப் புதிர்!
தினமும் அல்லது அவ்வப்போது
சுடோகு புதிர்களை விடுவியுங்கள்!
--------------------------------------------------------------------
நியூட்டன் அறிவியல் மன்றம்
-------------------------------------------------------------------
அல்ஜிப்ராவோ ஜியோமெட்ரியோ தெரிய வேண்டிய
அவசியம் இல்லை. சுடோகு வெறும்  எண்புதிர்.
ஆங்கில இந்து ஏட்டில் பலதரப்பட்ட வாசகர்களுக்கும்
ஏற்றவாறு தினமும் சுடோகு புதிர் வெளியிடப்
படுகிறது.

இப்புதிரின் கடினத்தன்மை நட்சத்திரக் குறியீட்டால்
அறிவிக்கப் படுகிறது. கடினத்தன்மையைப் பொறுத்து
1 நட்சத்திரம் முதல் 5 நட்சத்திரங்கள் வரை கொடுக்கப்
படுகின்றன. மிக எளிய புதிருக்கு 1 நட்சத்திரமும்,
மிக அதிகக் கடினமான புதிருக்கு 5 நட்சத்திரங்களும்
இந்து ஏட்டால் வழங்கப் படுகின்றன.

இன்றைய ஆங்கில இந்து (The Hindu, 30 August 2017) ஏட்டில்
வெளிவந்த, மிக அதிக கடினத்  தன்மை வாய்ந்த,
அதாவது 5நட்சத்திரக் குறியீடு வழங்கப்பட்ட ஒரு
சுடோகு புதிரை விடுவித்துள்ளேன். அது உங்கள்
பார்வைக்கு.

இதை ஒரே மூச்சில் விடுவித்தேன். சுடோகு புதிரை
விடுவிக்க சுமார் 10 அல்லது 15 நிமிடங்களே ஆகும்.
 எல்லோரும் முயன்று பாருங்கள். சுடோகு புதிரை
விடுவிப்பதை அன்றாட வாழ்க்கையின் ஒரு
அங்கமாக ஆக்கிக் கொள்ளுங்கள்.
*******************************************************

சீன அரசு நாத்திக அரசு. எல்லா மதங்களுக்கும்
அங்கு கட்டுப்பாடு உண்டு. சீன அரசு தனது அரசமைப்புச்
சட்டத்தில் நாத்திக அரசாக (Atheist state) அறிவித்துக்
கொண்டு நடைமுறைப் படுத்தி வருகிறது. 

    இதிலும்தான்!
சுடோகு புதிருக்காகவே பல ஆண்டுகளுக்கு முன்பு
டெக்கான் க்ரோனிக்கில் வாங்கினேன். அப்போது
அதில் தினமும் 2 சுடோகுகள் வரும். பின் இந்தியன்
எக்ஸ்பிரஸின் இரட்டை சுடோகுகளில் கடினமானதை
விடுவித்தேன். பின்னர் தினமும் வாங்குகிற படிக்கிற
பத்திரிகைகள் The Hindu மற்றும் Times of India என்றானபின்,
இந்து ஏட்டின் 4 star மற்றும் 5 star என்று வழக்கப்
படுத்திக்க கொண்டேன்.     

புதன், 30 ஆகஸ்ட், 2017

மியான்மர் - ஒரு பார்வை..!
சமீபத்திய பர்மா (மியான்மர்) வன்முறைகளை தொடர்ந்து சமூக வலைதளங்கள் எங்கிலும் மிகக்கொடூரமான, மிருகத்தனமான வன்முறை படங்கள்..!
நிறையபேர் எந்த வரலாற்று பின்னணியும் தெரியாமல், இது ஏதோ நேற்று துவங்கிய 'முஸ்லிம்கள் மீதான வன்முறை' என்று நினைத்துக்கொண்டிருக்கிறார்கள். அப்படியே பதிவிடுகிறார்கள்...
உலகின் மிக நீண்ட 'உள்நாட்டு யுத்தங்களில்' ஒன்று பர்மா மோதல். இரண்டாம் உலக போருக்கு முன்பிருந்தே இந்த பிரச்சினை நடந்துகொண்டிருக்கிறது.
இது... அரசியல், இனம், மதம், மொழி, பொருளாதாரம் என்று மிகவும் சிக்கலான சமூக மூலக்கூறுகளின் மொத்த பிரளயம்.
நம் ஒவ்வொருவருக்கும் தம் சுயகருத்து ‍ அபிப்பிராயம் கொள்ள சுதந்திரம் இருக்கிறது.
ஆனால், ஒரு விஷயத்தில் ஆழமான நிலைப்பாட்டை எடுக்குமுன் அதைப்பற்றி கொஞ்சம் ஆலசி ஆராய்வது நல்லது.
1946 ல், இந்த நிலப்பரப்புக்கள் முழுவதும் ஆங்கிலேயர் ஆட்சியில் இருக்கையில், தற்போதுள்ள "ராக்கைன்" பகுதியை சார்ந்த முஸ்லிம் தலைவர்கள், சுதந்திரம் கிடைக்கும்போது தங்களை பாக்கிஸ்தானுடன் (கிழக்கு) சேர்க்குமாறு கேட்க, முஹம்மது அலி ஜின்ன அதை மறுத்தார். இன்றுள்ள வெறியாட்டத்தின் விதை ஜின்னாவின் இந்த முடிவால்தான் விதைக்கப்பட்டது.
இதை தொடர்ந்து, அங்கு மிர் காசிம் என்பவர் தலைமையில் முஜாகிதீன்கள் படை உருவாக்கப்பட்டு அப்போதைய பர்மிய அரசுமீது தொட‌ர் தாக்குதல்கள் நடத்தப்பட்டன.
சில தாக்குதல்கள் மிக கடுமையாக இருந்ததாகவும் அரசு தரப்பில் நிறைய உயிர் மற்றும் பொருள் சேதம் ஏற்பட்டதாகவும் குறிப்புகள் காணப்படுகிறது.
மேலும், பல தாக்குதல்கள் நிராயுதபாணியான அரசு அலுவலர்கள்மீது நடத்தப்பட்டதால் பெருவாரியான பர்மியர்களுக்கு முஹாஜிதீன் மற்றும் முஸ்லிம்கள் மீது வெறுப்பு ஏற்பட துவங்கியது. அரசும் அதற்கு தூபமிட்டது..
1946 ல் ஒரு குழுவாக இருந்த இந்த போராட்டக்காரர்கள், கருத்துவேறுபாடுகள் ஏற்பட்டு, பிரிந்து, பிறழ்ந்து, 1990 களில் சுமார் 12 குழுக்களாக‌ தனித்தனியாக போராட துவங்கினர். தங்களுக்குள் உள்ள தனிப்பட்ட விருப்பு, வெறுப்புகளால் ... காட்டிக்குடுத்தல், கூட்டிக்குடுத்தல் என்று எட்டப்பன்வேலைகள் வேறு...!
அதுமட்டுமின்றி தன் ம‌தத்தை தவிற பிறரின் பிரச்சினைகளை பற்றி அவர்கள் கவலைப்படவே இல்லை. அவர்கள் வீடுகளை விட்டு துரத்தப்பட்ட போதும், துன்புறுத்தப்பட்டபோதும் கூட கண்டுகொள்ளவே இல்லை.
முடிவு..?
ஒவ்வொரு சிறு குழுவாக கருவறுத்து (அப்போதெல்லாம் இந்த அளவுக்கு சமூக வலைதள இல்லாததால் பலருக்கும் தெரியவில்லை) இன்று அந்த இனமே அழிவின் விளிம்பில் நின்றுகொண்டு மரணஓலமிடுகிறது..!
தோழர்களே... இதிலிருந்தேனும் பாடம் படியுங்கள்...!
இத்தாலியிலும் ஸ்பெயினிலும் படிக்காத பாடத்தை..
மங்கோலியாவில் படிக்காத பாடத்தை...
செர்பியாவில் படிக்காத பாடத்தை...
சீனாவிலும், பல்கேரியாவிலும், உகோஸ்லாவியாவிலும் படிக்காததை...
இலங்கையில் படிக்காத பாடத்தை...
இப்போது...; மியான்மர் உங்களுக்கு பாடம் ந‌டத்துகிறது.
நீங்கள் இங்கும் கற்கத்தவறினால்...
நாளை, நீங்களும் இதேபோல், மரண ஓலம் இட நேரிடலாம்..!
ஓற்றுமையோடு, பொதுஎதிரி யார் என்ற தெளிவோடு செயல்படுங்கள்..! உங்கள் சில்லறை கருத்துமோதல்களுக்காகவும், ஈகோ காரணமாகவும், பிரிந்து உங்களுக்குள் அடித்துக்கொண்டிருந்தால்...
விரைவில், நீங்களும் இருந்த இடம் தெரியாமல் போய்விடுவீர்கள். இது முஸ்லிம்க‌ளுக்கு ம‌ட்டுமான‌ பாட‌ம‌ல்ல‌..!
கனத்த இதயத்துடன்..,
ஃபாசில் அலி
Fazil Ali

திங்கள், 28 ஆகஸ்ட், 2017

அரசுப் பள்ளிகளிலிருந்து கடந்த 10 ஆண்டுகளில் அரசு மருத்துவக் கல்லூரிகளில் சேர்ந்துள்ள மாணவர்கள், வெறும் 314 பேர் மட்டுமே. தனியார் மருத்துவக் கல்லூரிகளில் சேர்ந்துள்ள அரசுப் பள்ளி மாணவர்களின் எண்ணிக்கை 74. எனில், தமிழகத்தில் மொத்தம் 388 பேர் மட்டுமே கடந்த 10 ஆண்டுகளில் அரசுப் பள்ளிகளில் இருந்து மருத்துவப் படிப்பில் சேர்ந்துள்ளார்கள். ஒவ்வோர் ஆண்டும் பல ஆயிரம் கோடி ரூபாயைக் கல்விக்காகச் செலவு செய்து, விரல் விட்டு எண்ண முடிகிற ஒரு சிலரை மட்டுமே நம் அரசுப் பள்ளிகள், மருத்துவக் கல்லூரிகளுக்கு அனுப்பிக் கொண்டிருக்கின்றன.
ஏன் இந்தப் புள்ளிவிவரங்கள் 2007-ம் ஆண்டிலிருந்து எடுக்கப்பட்டுள்ளன என்பதை முக்கியமாகக் கவனத்தில் எடுத்துக்கொள்ள வேண்டும். மருத்துவம், பொறியியல் போன்ற படிப்புகளுக்காக மாநில அளவில் நடத்தப் பட்டுவந்த நுழைவுத் தேர்வு 2007-ம் ஆண்டு முதல் ரத்து செய்யப்பட்டது. ‘பன்னிரண்டாம் வகுப்பில் பெறும் மதிப்பெண்களின் அடிப்படையிலேயே சேர்க்கை நடைபெறும்’ என்று மாநில அரசு அறிவித்தது. ஏன் இந்த நுழைவுத் தேர்வு ரத்து செய்யப்பட்டது? கிராமப்புற ஏழை மாணவர்கள் நுழைவுத் தேர்வுக்கான பயிற்சி வகுப்புகளுக்குச் செல்ல இயலாது; மருத்துவம் உள்ளிட்ட உயர்கல்விகளில் நகர்ப்புற மாணவர்களுக்கு இணையாகப் போட்டிப் போட இயலாது; நகர்ப்புற மாணவர்களுக்குக் கிடைக்கும் கல்வி வாய்ப்புகள் கிராமப்புற மாணவர்களுக்குக் கிடைப்பதில்லை. இதெல்லாம்தான் நுழைவுத் தேர்வை ரத்து செய்யும் சட்டத்துக்கான காரணங்களாகச் சொல்லப்பட்டன.

நாணால் உயிரைத் துறப்பர் உயிர்ப்பொருட்டால் 
நாண்துறவார் நாணாள் பவர்.

நாண உணர்வுடையவர்கள், மானத்தைக் காப்பாற்றிக் கொள்ள உயிரையும் விடுவார்கள். உயிரைக் காப்பாற்றிக் கொள்வதற்காக மானத்தை விடமாட்டார்கள்
 
KI NATARAASAN



சீக்கிய மதச் சாமியார் குர்மீத் ராம் ரஹீம் சிங்கிற்கு 
கற்பழிப்பு வழக்கில் வெறும் 10 ஆண்டு
சிறை தண்டனை விதிப்பு!


ஆயுள் தண்டனை விதிக்க
நீதிபதிக்கு பயம்!

வழக்குத் தொடுத்த 2 பெண்களையும்
தொடர்ந்து 3 ஆண்டாக கற்பழித்த
சீக்கிய மதச் சாமியார்
குர்மீத் ராம் ரஹீம் சிங்கிற்கு
வெறும் 10 ஆண்டு மட்டுமே சிறை!

மகளோடு செக்ஸ் உறவு வைத்துக்கொண்ட
சீக்கிய மதச் சாமியார் குர்மீத் ராம் ரஹீம் சிங்!
குற்றம் சாட்டுபவர் மருமகன்!
இவனுக்கு ஆயுள் தண்டனை விதிக்க பயந்த நீதிபதி!

TVயில் Blue filmஐ ஓடவிட்டு
கையில் துப்பாக்கியுடன்
பெண்களை மிரட்டி மிரட்டி
ஆண்டுக் கணக்கில் கற்பழித்த
சீக்கிய மதச் சாமியார்
குர்மீத் ராம் ரஹீம் சிங் சாக வேண்டும்!

உண்மைதான். உண்மையில்லை என்று உங்களால் நிரூபிக்க
முடியுமா?

சீக்கிய சாமியார் குர்மீத் சிங்கிற்கு 
பெண்களைக்
கூட்டிக் கொடுப்பதும், சாமியார்
கற்பழிக்கும்போது காவல் இருப்பதுமே
சாமியாரின் சீடர்களின் பணி!
  

அதுதானே உண்மை. ஹரியானா பஞ்சாப்பில்
சீக்கியர்கள்தானே அதிகம். எமது பதிவுகள்
பொழுதுபோக்கிற்காக எழுதப் படுவதில்லை.
துல்லியமான தரவுகளுடன் நிரூபிக்கப்பட்ட
உண்மைகளை மட்டுமே எமது பதிவுகளில்
காண முடியும்.


இதெல்லாம் அப்பட்டமான பொய். உங்கள் கூட வேலை
பார்த்த நண்பர் அனைத்தும் அறிந்தவரா? தேரா சாச்சா சவுதா
அமைப்பு தொடங்கப்பட்ட சிறு காலத்தில் ஒரு முறை நான்
அறியானாவுக்குச் சென்று இருந்தேன். இவரின் ஊர்வலம்
வந்து கொண்டு இருந்தது. டிராபிக் ஜாம் ஏற்பட்டது.
ஒருவன் கெட்டவன் என்று ஆனபின்னால், அவன் எங்கள்
ஜாதி இல்லை என்று கையைக் கழுவுகிறார் உங்கள்
நண்பர். குர்மீத் சிங் என்பதே சாமியாரின் பெயர்.
மன்மோகன் சிங், ஹர்பஜன் சிங் என்பது போல்,
இவன் பெயர் குர்மீத் சிங். இவன் ஒரு சீக்கியன்.

முக்கிய அறிவிப்பு!
சீக்கிய மதச் சாமியார்
குர்மீத் சிங்கிற்கு 20 ஆண்டு சிறை!
2 கற்பழிப்புகளில் ஒவ்வொன்றிலும்  தலா 10 ஆண்டு!
தண்டனையை  ஒன்றன் பின் ஒன்றாக அனுபவிக்குமாறு
தீர்ப்பு!  எனவே 20 ஆண்டு சிறை! மொத்தம் 20 ஆண்டு!

நியாயம் என்னவென்றால், இக்கயவனுக்கு
இரட்டை ஆயுள் தண்டனை கொடுத்திருக்க வேண்டும்.
ஆனால் அப்படி தண்டனை கொடுக்க நீதிபதிக்கு பயம்.
எனவே 10 + 10= 20 என்று தண்டனை கொடுக்கிறார்.

லாலு மீதான ஒரு வழக்கில்தான் இதுவரை தீர்ப்பு
வந்திருக்கிறது (5 ஆண்டு சிறை). இதே போன்று பல
வழக்குகள் உள்ளன. அவற்றின் விசாரணை வேகம் அடைந்து
வருகிறது. விரைவில் அவற்றில் தீர்ப்புகள் வரும்.
தீர்ப்பு நிச்சயம் தண்டனை வழங்குவதாகத் தான் இருக்கும்.
ஏனெனில் அவர் மீதான வழக்கு open and shut case.
அதாவது முடிவு தெரிந்த வழக்குதான். லாலு தற்போது
பேரணி நடத்துவதே தீர்ப்பு வந்ததும் அழியப் போகும்
தன் கட்சியைக் காப்பாற்றிக் கொள்ளத்தான். மற்றப்படி
பாஜக எதிர்ப்பு என்பதெல்லாம் பொய்யே.   

 இரண்டு வழக்கு. ஒவ்வொன்றிலும் 10 ஆண்டு.
தண்டனையை ஒன்றன் பின் ஒன்றாக அனுபவிக்க
வேண்டும் என்று தீர்ப்பு. எனவே 10+10= 20 ஆண்டு சிறை.
இதை ஆங்கில ஊடகங்கள் சற்று முன்தான் அறிவித்தன.

சாதி மத சிறுபான்மை அடிப்படையில் இவனை
ஆதரிப்பதற்கு தமிழ்நாட்டில் நிறையக் கழிசடைகள்
உண்டு.

முக்கிய அறிவிப்பு
----------------------------------
சீக்கிய மதக் கயவனும் போலிச்  சாமியாரும் ஆகிய
குர்மீத் ராம் ரஹீம் சிங்கை நேரடியாகவோ மறைமுகமாகவோ
ஆதரித்தும் நியாயப் படுத்தியும் எழுதப்படும் பதிவுகள்
இங்கு அனுமதிக்கப் படுவதில்லை.

சீக்கிய மத சாமியார் குர்மீத் சிங்
200க்கும் மேற்பட்ட பெண்களைக் கொன்று
ஆசிரமத்தில் புதைத்துள்ளான்.
உதவியாளரின் ஒப்புதல் வாக்குமூலம்!
ஆதாரத்துடன் ஒளிபரப்பு:    

TIMES NOW TVயில் ஆதாரத்துடன் ஒளிபரப்பினார்கள் இன்று.

இதன் மூலம் தாங்கள் சொல்ல வருவது என்ன?
சார் நமே surnameஐ வைத்துக் கொண்டு இங்கு யாரும்
சொல்லவில்லை. அவர் ஒரு சீக்கியர். இந்த உண்மையைச் சொன்னால் உங்களுக்கு அதை ஏற்றுக் கொள்ளக்
கஷ்டம் என்ன?

செவ்வாய், 22 ஆகஸ்ட், 2017

அண்ணல் அம்பேத்காரின் ஒரு மொழிக்கொள்கை!
------------------------------------------------------------------------------------------ 
பிராந்திய மொழி அந்த மாநிலத்தின் ஆட்சிமொழியாக 
இருக்க கூடாது. இதற்கு அரசியல் சட்டத்திலேயே 
வகை செய்ய வேண்டும். 

இந்தியே மாநிலத்தின் ஆட்சி மொழியாக இருக்க வேண்டும். 
இந்த நோக்கத்திற்காக இந்தியா தயாராகும்வரை 
ஆங்கிலம் ஆட்சி மொழியாக இருக்கலாம். 
இந்தியர்கள் இதனை ஏற்றுக் கொள்வார்களா? 
அவர்கள் ஏற்றுக்கொள்ளவில்லை என்றால் 
மொழிவாரி மாநிலங்கள் ஓர் அபாயமாக 
மாறுவது எளிதாகிவிடும்.

ஒரே மொழி இருந்தால் அது மக்களை ஒன்றுபடுத்தும்
இரண்டு மொழிகள் மக்களை நிச்சயம் பிளவுபடுத்தவே 
செய்யும். இது அசைக்க முடியாத விதி.

டாக்டர் அம்பேத்கர், நூல் : 
மொழிவாரி மாநிலங்கள் பற்றிய சிந்தனைகள், பக்: 212-214.
******************************************************************************************

திங்கள், 21 ஆகஸ்ட், 2017

7. Why don’t you take away wickets as well as overs to balance up teams’ resources?
This is a simple idea but unfortunately it creates many difficulties and problems over implementation. First is how to apportion wickets deducted for overs lost bearing in mind not only the rate of deduction, (which might result in a fraction of a wicket!) but also the fact that the earlier wickets are usually more valuable than the later wickets. Second is the problem of deciding which batsmen shall not be allowed to bat. This could cause dissatisfaction not only to the batsmen excluded but also to the spectators who may have come to see particular players bat.
Because of such problems cricketing authorities have always regarded the idea of deducting wickets as an unacceptable option.

8. When Team 2's innings is interrupted, why do you not set a target that maintains the probability of achieving the target across the stoppage?
The problem with maintaining Team 2's probability of achieving their target across a stoppage is that it would mean that the target depended upon how many runs they had scored at the point of interruption. The more runs they had scored the more they would need, and the less they had scored the less they would need.
For instance, suppose that in three parallel matches, Team 1 score 250 in their 50 overs and Team 2's innings is interrupted after 20 overs with 10 overs lost in each case but with the scores at 60/2, 100/2 and 140/2. In all three cases the resources remaining were reduced from 67.3% to 52.4%, a loss of 14.9%, and so the target would be reduced by 14.9% of 250 to 213 (calculations based on the D/L tables for the Standard Edition.) If one set the revised target by scaling the runs still required by the resources remaining after and before the stoppage, which would maintain an equal probability of achieving the target, the targets would be different in the three cases, at 208, 217 and 226 respectively. It is surely unjust for a team to have to face a higher target because they had scored more runs. And an absurdity in the comparative results would be quite possible. Suppose, for instance, that the final scores of Team 2 in the three matches above are respectively 210, 216 and 225. The team scoring the most (225) have lost the match and the team scoring the least (210) have won.
The perceived problem with the way the revised target is set only arises when Team 2 are well ahead, or well behind, their par score. For instance, if they were 30 runs behind par at a stoppage and afterwards there was only time for a very few overs, they would still be 30 runs behind par and would have these few overs to make up the deficit, so their task may become virtually impossible. (If the match were washed out completely, they would have lost by 30 runs; nobody would dispute this.) It is Team 2's obligation to remain close to par to avoid losing if the match were terminated or their task being made more difficult if the innings were to be shortened

9. How can Team 2 win by a number of runs?
When Team 2's innings is prematurely terminated by the weather the result is decided by comparing their actual score with their ‘par score'. Whether Team 2 have won or lost, the difference of their score from the par score is the best measure available of the margin of victory and so it has been decided that the result should be given in terms of this margin in all such cases.
Even when a game is not prematurely terminated it is still possible to describe a victory for Team 2 in terms of a margin of runs. When they hit the winning run their score will be ahead of par by a certain margin and there is a good case for expressing the result in terms of this margin of runs in all cases. For instance, if Team 2 score the winning run off the last ball available, to describe their victory in terms of the wickets they had in hand gives no indication of its narrowness.
10. Suppose we are playing a 50-overs-per-side game where only 10 overs per side are needed for the match to count. Team 1 send in pinch hitters and get off to a wonderful start making 100 for no wicket after 10 overs. There is then a prolonged stoppage and when play can resume Team 1's innings is closed and there is only just time for Team 2 to face the minimum 10 overs. The D/L calculation (Standard Edition) gives Team 2's target as 151 in 10 overs. How can this practically impossible target be justified?
11 Same playing regulations as in Q10. Team 1 make the excellent score of 350 in their 50 overs and Team 2 start their reply cautiously and reach 40/0 in 10 overs. The heavens now open (or the floodlights fail) and further play is ruled impossible. Under the Standard Edition of the D/L system Team 2 are declared the winners by 3 runs. They were clearly already falling behind the run rate they needed even allowing for the fact that they had all their wickets intact, so how can this result be justified?
The above represent the two worst-case scenarios for treatment by the Standard Edition of the D/L method. They could only give such extreme consequences with playing regulations that allow a minimum of 10 overs per side for the match to count. But a similar, though less exaggerated, injustice could still arise even with a minimum of 20 overs per side required.
The Standard D/L method was devised so that anyone could perform the calculations with nothing more than the single table of resource percentages and a pocket calculator. This was regarded as an essential requirement for the method. It was considered that to be totally dependent on a computer would mean that the method could not be used universally, it would be vulnerable to computer failure and it would be more difficult to explain how the targets were calculated.
The use of the simplifying single table of resource percentages meant that actual performance must necessarily be assumed to be proportional to average performance. In 95% of cases this assumption is valid, but the assumption breaks down when an actual performance is far above the average, as is the case in the scenarios of Q10 and Q11 and in the record-breaking match between South Africa and Australia (March 2006) in which South Africa scored 438/9 to beat Australia’s 434 in 50 overs.
This problem has now been overcome by use of the Professional Edition and this has been in general use for most matches at the top level of the game, including ODIs, since early in 2004. It can only be operated by using a computer program.
12. How can copies of the full tables be obtained?
19. Can the method be used for Twenty20 matches?
The method is used in Twenty20 matches in exactly the same way as in 50 overs/innings games. It is no different from a standard ODI reduced to 20 overs/side by rain before the start.
The Professional Edition was introduced in 2003 to allow for the increasing prevalence of higher scoring games. In essence this distributes the run-scoring expectations more evenly throughout the innings compared with the original (Standard) Edition which is more geared to average performances. Twenty20 games also have higher run scoring rates and experience has shown that the Professional Edition works particularly well in these games.

D/L method: answers to frequently asked questions (updated December 2008)
by Frank Duckworth & Tony Lewis
(Note: throughout the following, the side which bats first is called Team 1 and the side batting second is called Team 2.)
1. What is the difference between the Standard Edition and the Professional Edition?
At the top level of the game, the Professional Edition of the D/L method is now used. This requires use of a computer program. At lower levels of the game, where use of a computer cannot always be guaranteed, the Standard Edition is used. This is the method which was used universally before 2004; it is operated manually using the published tables of resource percentages.
2. Why should Team 2 sometimes be set the task of scoring more runs than were made by Team 1 when they have the same number of overs to face?
When the interruption occurs during the first innings, so that the match is shortened to one of fewer overs per side than it was at its start, Team 1 are usually more disadvantaged than Team 2. Before the stoppage they had been pacing their innings in the expectation of receiving say 50 overs and would not have taken the risks of scoring as fast as they would have done had they known their innings was to be shortened. Team 2, on the other hand, know from the start of their innings that they have the reduced number of overs and can pace their entire innings accordingly. Team 2 are set a higher target to compensate Team 1 for this disadvantage.
Consider, for example, when Team 1 have batted for 40 of an intended 50-over innings and then rain washes out the rest of their innings and there is just time for Team 2 to receive 40 overs. If they had wickets in hand, Team 1 might have expected to make around 60 or 70 in those final 10 overs. But Team 2 know they have only 40 overs to receive from the moment they start their innings. The average score in a 40-over innings is only 20 to 25 less than that made in 50 overs, so Team 1's loss is typically 40-45 runs greater than Team 2's and the target is raised by about this amount.
The necessity to set a higher target for Team 2 arises from the regulations for most competitions that require that lost overs, where possible, be divided equally between the two sides. It would be possible to compensate Team 1 for their disadvantage by allowing them to face more overs than Team 2 and in this way the latter need not be set an enhanced target, but this would require a complicated calculation and would reduce the scope for accommodating further stoppages. Because of these disadvantages, cricket authorities have preferred to stay with the present regulations.
3. Why should this apply when Team 1 have been bowled out?
In limited-overs cricket no distinction is made between the two ways in which an innings is closed, using up all the overs or losing all ten wickets. In both cases the team have used up all the resources of their innings. In an uninterrupted innings, there is no difference between Team 1's score of 250, for instance, whether it were 250 for 3 wickets in 50 overs or whether it were 250 all out in 47 overs. Similarly in an interrupted innings, the method of target revision cannot and should not distinguish between whether Team 1's innings were terminated by being all out or by using up their allocation of overs.
4. When Team 2 have more resources than Team 1, why do you not simply scale up the target by the ratio of resources?
In the Professional Edition, which is now used in most top-level matches including ODIs, the problem of early high scoring rates producing anomalously high targets has been overcome, and so direct scaling is employed. So this question only relates to the Standard Edition.
In the Standard Edition, to scale up a target by the ratio of resources could lead to some unrealistically high targets if Team 1 had achieved an early high rate of scoring and rain caused a drastic reduction in the overs for the match; see Q10, for instance). We have preferred, therefore, to assume average performance for Team 1's additional loss of resource over Team 2.
5. But why should the target score sometimes go down if there is an interruption in the first innings and teams have the same number of overs?
In interruptions to the first innings the D/L method makes appropriate allowance for the comparative resources lost by the stoppage.
Consider the following situation. Suppose Team 1 started well in the style of the renowned Sri Lankan 1996 World Cup winning team but the wheels fell off and they were 150/9 in 30 of the 50 overs. On average Team 1 would be all out shortly, leaving Team 2 to score at the rate of around 3 per over for their full 50 overs. If rain interrupted play at this point and 19 overs were lost per side, then on the resumption Team 1 would have only one over to survive and their run rate would then be close to 5 per over. By all the 'old' methods, for 31 overs also, Team 2 would have to score around 150, around 5 per over, to win - in other words Team 1 would have been greatly advantaged by the rain interruption changing a required scoring rate of 3 per over to 5 per over for Team 2. By the D/L method this advantage to Team 1 would be neutralised so that the target for Team 2 would be well below 150 in this circumstance, and fairly so, which maintains the advantage Team 2 had earned before the stoppage. In other words, and quite logically, Team 2 have to get fewer runs than Team 1 scored to win in the same number of overs.
6. When Team 2 have the more resource, you increase the target by applying the excess resource to the quantity known as G50, which is the average score for a 50-over innings. Why do you not use a different value of G50 according to ground conditions on the day?
The quantity G50 is not used in the Professional Edition as used from the start of 2004, enhanced targets being calculated by scaling Team 1’s score in the direct ratio of the resources available to Team 2 and Team 1, so this question only applies to the Standard Edition.
The key is simplicity. We accept that the value of G50, perhaps, should be different for each country, or even for each ground, and there is no reason why any cricket authority may not choose the value it believes to be the most appropriate. In fact it would be possible for the two captains to agree a value of G50 before the start of each match, taking account of all relevant factors.
However, we not believe that something that is only invoked if rain interferes with the game should impose itself on every game in this way. In any case, it should be realised that the value of G50 usually has very little effect on the revised target. If 250 were used, for instance, instead of 235, it is unlikely that the target would be more than two or three runs different.
In the Professional Edition, the option has been retained for an average 50-over score to be input for the purposes of predicting Team 1’s eventual score from any point of their innings. This facility is purely for media or spectator interest and is not a part of the target calculation. Rather than use the default value of G50, commentators have the option of entering a ‘best guess score’ for 50 overs before the match starts, this taking account of ground conditions.

Duckworth-Lewis
The Duckworth-Lewis Method (2001)
An introduction to the D/L (Duckworth/Lewis) method of resetting targets in interrupted one-day cricket matches by Frank Duckworth & Tony Lewis
The D/L method of resetting targets in rain-affected one-day cricket matches has now been in operation for over four years and has been called into use on more than 200 occasions. It has been adopted by the International Cricket Council as the standard 'rain-rule' in the test playing countries and in many associate member countries for a two year period from Sept 1999 following its adoption for the 1999 World Cup competition
The method is the invention of Frank Duckworth and Tony Lewis. Frank is a consultant statistician and editor of the Royal Statistical Society's monthly news magazine, RSS NEWS. Tony is a lecturer in Quantitative Methods in Management in the Business School at Oxford Brookes University. The method was developed in the early part of the 1990s when Tony was working at the University of the West of England, Bristol and when Frank and Tony lived quite close to each other in Gloucestershire.
The method that they have invented is simple to apply provided one is prepared to take a few minutes to understand its logic. The calculations can easily be performed using nothing more than a single table of numbers and a pocket calculator although a purpose built computer program is available to undertake the calculations accurately and quickly in match situations (see further information on this below). With a little practice, however, there is no reason why anyone should not be able to calculate the revised target and in quick time. The authors firmly believe that the method is simple enough for it to be adopted for use at all levels of limited-overs cricket. Already this belief is being realised as the method is in use in several lower levels of competition, including, for example, some local leagues in England and Sydney Grade Cricket in Australia. This article provides a summary of the way the method works.
Basis of the method
The D/L method works using the notion that teams have two resources with which to make as many runs as they can - these are the number of overs they have to receive and the number of wickets they have in hand. From any stage in their innings, their further run-scoring capability depends on both these two resources in combination. The table gives the percentage of these combined resources that remain for any number of overs left and wickets lost. An extract from the table is given in Table 1. Information is provided later on how the full table can be obtained, including the ball-by-ball version which is used when stoppages occur mid-over.
When a match is shortened after it has begun, the resources of one or both teams are depleted and the two teams usually have different amounts of resource for their innings. In this case a revised target must be set. The D/L method does this in accordance with the relative resources available to the two teams. If stoppages cause the team batting second (referred to here as Team 2) to have less resources available, as is more often than not the case, then their target will be revised downwards. If, on the other hand, as often happens when Team 1's innings has been interrupted, the stoppages usually result in Team 2 having more resources available then their target is revised upwards to correct for the extra resources they have at their disposal.
Table 1: Extract from the table of resource percentages remaining
Wickets lost
Overs left02579
50100.083.849.526.57.6
4090.377.648.326.47.6
3077.168.245.726.27.6
2568.761.843.425.97.6
2058.954.040.025.27.6
1034.132.527.520.67.5
518.417.916.414.07.0
Reading the table
The single table applies to all lengths of one-day matches from 50 overs-per-side downwards. Because this length of match is by far the most common, the resources listed in the table are expressed as percentages of those available at the start of a 50-over innings. Thus when there are 50 overs still to be received and no wickets have been lost, the resource percentage available is 100%. A 40-over innings starts with a resource percentage of 90.3% relative to a 50 over innings. An innings shortened to 25-overs before it starts commences with a resource percentage of 68.7% relative to 50-over innings. (Although such innings have only half the overs of a 50-over innings they have all 10 wickets and so have much more than half the resources.)
In order to determine the correct resource percentage the batting side has remaining at any stage of its innings, the number of overs left must be identified. This number of overs left, in conjunction with the number of wickets lost, is then used to read the resource percentage remaining from the table.
For example, suppose that after 20 out of 50 overs a team have lost 2 wickets. They have 30 overs left. From the table you will see that the resource percentage remaining is 68.2%.
Suppose now that there is an interruption in play and 10 overs are lost from the innings. When play can resume there are only 20 overs left but there are still, of course, 2 wickets down, and the table now tells us that the resource percentage remaining is 54.0%. Thus the shortening of the innings has caused the team to lose a resource percentage of 68.2 - 54.0 = 14.2%.
Having started with a resource percentage of 100% and lost 14.2%, then if they complete their innings with no further loss of overs, they will have had a resource percentage available for their innings of 100 - 14.2 = 85.8%.
Applying the D/L method
The procedure for setting a revised target, which is the same for any number of stoppages at any stage of the match, is as follows.
  1. For each team's innings
    (a) from the table note the resource percentage the team had available at the start of their innings;
    (b) using the table, calculate the resource percentage lost by each interruption;
    (c) hence calculate the resource percentage available.
  2. If Team 2 have less resources available than Team 1, then calculate the ratio of the resources available to the two teams. Team 2's revised target is obtained by scaling down Team 1's score by this ratio. The figure so obtained is rounded down to the next whole number to give the score needed for a tie. The target is one more run than this. The procedure by which a tie is always possible is a consequence of a change in playing conditions introduced internationally from April 1999.
  3. If Team 2 have more resources available than Team 1, then calculate the amount by which Team 2's resource percentage exceeds Team 1's. Work out this excess as a percentage of 225 [the average 50-over score in 'first class' matches and one-day internationals (ODIs)]. Rounding this down to the next whole number gives the extra runs to add on to Team 1's score to give the score to tie. Adding one run gives Team 2's target.

Worked examples
Example 1: Premature curtailment of Team 2's innings
Team 1 have scored 250 runs from their 50 available overs and Team 2 lose 5 wickets in scoring 199 runs in 40 overs. Play is then stopped by the weather, the rain refuses to relent and the match is abandoned. A decision on the winner is required.
Team 1's innings: this was uninterrupted, so the resource percentage available is100%.
Team 2's innings: resource % available at start of innings =100%
After 40 overs Team 2 have 10 overs left and have lost 5 wickets.
From table, resource % left at suspension of play =
27.5%
As play is abandoned all this remaining resource is lost.
Hence resource % available for Team 2's innings = 100 - 27.5 =
72.5%
Team 2 had less resource available than Team 1 and so to give the target Team 1's score must be scaled down by the ratio of resources, 72.5/100
Team 1 scored 250, so Team 2's 'target' is 250 x 72.5/100 = 181.25
For competitions commencing April 1999, the next lower whole number, 181, is the score to tie, or the 'par score' for the match situation at the stoppage.
As there is to be no further play, the winner is decided according to whether or not the par score has been exceeded. With 199 runs on the board, they have exceeded this by 18 and so are declared the winners by 18 runs.
Note : The above result is quite fair as Team 2 were clearly in a strong position when play was stopped and would very likely have gone on to win the match if it hadn't rained. Most other methods of target revision in use would, unfairly, make Team 1 the winners. The average run rate method gives 201 to win, the ICC (1995) method gives 227 and the parabola method gives 226. [Setting the target by the method of Discounted Total Runs - the Australian rain-rule - requires knowledge of the runs made by Team 1 from their most productive overs but the target would almost certainly be no lower than that required under average run rate and would probably be much higher so that Team 2 would very probably lose by this method as well.]

Example 2Interruption to Team 2's innings
A one-day match has been shortened to 40 overs per side before it commenced. Team 1 have scored 200 runs from their 40 available overs and Team 2 lose 5 wickets in scoring 140 runs in 30 overs. Play is then suspended and 5 overs are lost. What is Team 2's revised target?
Team 1's innings: At the start of 40 over innings resource percentage available =90.3%
Team 2's innings: resource % available at start of 40 over innings =90.3%
After 30 overs Team 2 have 10 overs left and have lost 5 wickets.
From table, resource % left at start of suspension =
27.5%
5 overs are lost, so when play is resumed 5 overs are left.
From table, resource % left at resumption of play =
16.4%
Hence resource % lost = 27.5 - 16.4 =11.1%
so resource % available for Team 2's innings = 90.3 - 11.1 =79.2%
Team 2 had less resource available than Team 1 and so to give the target Team 1's score must be scaled down by the ratio of resources, 79.2/90.3
Team 1 scored 200, so Team 2's 'target' is 200 x 79.2/90.3 =175.42 which rounds down to 175 to tie with a revised target of 176. They then require a further 36 runs to win from 5 overs with 5 wickets in hand.

Example 3: Interruption to Team 1's innings
In an ODI, Team 1 have lost 7 wickets in scoring 190 runs in 40 overs from an expected 50 when extended rain leads to Team 1's innings being terminated and Team 2's innings is also restricted to 40 overs. What is the target for Team 2?
Because of the different stages of the teams' innings that their 10 overs are lost, they represent different losses of resource. Team 1 have lost 7 wickets and had 10 overs left when the rain arrived and so from the table you will see that the premature termination of their innings has deprived them of the 20.6% resource percentage they had remaining. Having started with 100% they have used 100 - 20.6 = 79.4%; in other words they have had 79.4% resources available for their innings.
Team 2 will also receive 40 overs. With 40 overs left and no wicket lost you will see from the table that the resource percentage which they have available (relative to a full 50 over innings) is 90.3%. Team 2 thus have 90.3 - 79.4 = 10.9% greater resource than had Team 1 and so they are set a target which is 10.9% of 225, or 24.53, more runs than Team 1 scored. [225 is the average in 50 overs for ODIs]
Using the sum 190 + 24.53 = 214.53 rounding down gives 214 to tie and Team 2's target is 215 in 40 overs.
Note: All other target resetting methods currently in use make no allowance for this interruption. They set the target of 191 simply because both teams are to receive the same number of overs. This is clearly an injustice to Team 1 who were pacing their innings to last 50 overs when it was curtailed, whereas Team 2 knew in advance of the reduction of their innings to 40 overs and have been handed an unfair advantage. D/L neutralises this by setting Team 2 a higher target than the number of runs Team 1 actually scored.

Information:
A booklet "Your comprehensive guide to the Duckworth/Lewis method for target resetting in one-day cricket" by Frank Duckworth and Tony Lewis has recently been published. Retailing at �5.95, copies can be obtained at English county grounds or by mail order from Acumen Books
There is a computer program CODA which carries out all calculations of D/L targets and provides many features besides. This program, which is now owned by ICC, is used by official scorers around the world. It is currently unavailable for purchase by the general public.
Frequently asked questions
After responding to many enquiries the authors have drawn up a list of frequently asked questions with their responses.