திங்கள், 21 ஆகஸ்ட், 2017

7. Why don’t you take away wickets as well as overs to balance up teams’ resources?
This is a simple idea but unfortunately it creates many difficulties and problems over implementation. First is how to apportion wickets deducted for overs lost bearing in mind not only the rate of deduction, (which might result in a fraction of a wicket!) but also the fact that the earlier wickets are usually more valuable than the later wickets. Second is the problem of deciding which batsmen shall not be allowed to bat. This could cause dissatisfaction not only to the batsmen excluded but also to the spectators who may have come to see particular players bat.
Because of such problems cricketing authorities have always regarded the idea of deducting wickets as an unacceptable option.

8. When Team 2's innings is interrupted, why do you not set a target that maintains the probability of achieving the target across the stoppage?
The problem with maintaining Team 2's probability of achieving their target across a stoppage is that it would mean that the target depended upon how many runs they had scored at the point of interruption. The more runs they had scored the more they would need, and the less they had scored the less they would need.
For instance, suppose that in three parallel matches, Team 1 score 250 in their 50 overs and Team 2's innings is interrupted after 20 overs with 10 overs lost in each case but with the scores at 60/2, 100/2 and 140/2. In all three cases the resources remaining were reduced from 67.3% to 52.4%, a loss of 14.9%, and so the target would be reduced by 14.9% of 250 to 213 (calculations based on the D/L tables for the Standard Edition.) If one set the revised target by scaling the runs still required by the resources remaining after and before the stoppage, which would maintain an equal probability of achieving the target, the targets would be different in the three cases, at 208, 217 and 226 respectively. It is surely unjust for a team to have to face a higher target because they had scored more runs. And an absurdity in the comparative results would be quite possible. Suppose, for instance, that the final scores of Team 2 in the three matches above are respectively 210, 216 and 225. The team scoring the most (225) have lost the match and the team scoring the least (210) have won.
The perceived problem with the way the revised target is set only arises when Team 2 are well ahead, or well behind, their par score. For instance, if they were 30 runs behind par at a stoppage and afterwards there was only time for a very few overs, they would still be 30 runs behind par and would have these few overs to make up the deficit, so their task may become virtually impossible. (If the match were washed out completely, they would have lost by 30 runs; nobody would dispute this.) It is Team 2's obligation to remain close to par to avoid losing if the match were terminated or their task being made more difficult if the innings were to be shortened

9. How can Team 2 win by a number of runs?
When Team 2's innings is prematurely terminated by the weather the result is decided by comparing their actual score with their ‘par score'. Whether Team 2 have won or lost, the difference of their score from the par score is the best measure available of the margin of victory and so it has been decided that the result should be given in terms of this margin in all such cases.
Even when a game is not prematurely terminated it is still possible to describe a victory for Team 2 in terms of a margin of runs. When they hit the winning run their score will be ahead of par by a certain margin and there is a good case for expressing the result in terms of this margin of runs in all cases. For instance, if Team 2 score the winning run off the last ball available, to describe their victory in terms of the wickets they had in hand gives no indication of its narrowness.
10. Suppose we are playing a 50-overs-per-side game where only 10 overs per side are needed for the match to count. Team 1 send in pinch hitters and get off to a wonderful start making 100 for no wicket after 10 overs. There is then a prolonged stoppage and when play can resume Team 1's innings is closed and there is only just time for Team 2 to face the minimum 10 overs. The D/L calculation (Standard Edition) gives Team 2's target as 151 in 10 overs. How can this practically impossible target be justified?
11 Same playing regulations as in Q10. Team 1 make the excellent score of 350 in their 50 overs and Team 2 start their reply cautiously and reach 40/0 in 10 overs. The heavens now open (or the floodlights fail) and further play is ruled impossible. Under the Standard Edition of the D/L system Team 2 are declared the winners by 3 runs. They were clearly already falling behind the run rate they needed even allowing for the fact that they had all their wickets intact, so how can this result be justified?
The above represent the two worst-case scenarios for treatment by the Standard Edition of the D/L method. They could only give such extreme consequences with playing regulations that allow a minimum of 10 overs per side for the match to count. But a similar, though less exaggerated, injustice could still arise even with a minimum of 20 overs per side required.
The Standard D/L method was devised so that anyone could perform the calculations with nothing more than the single table of resource percentages and a pocket calculator. This was regarded as an essential requirement for the method. It was considered that to be totally dependent on a computer would mean that the method could not be used universally, it would be vulnerable to computer failure and it would be more difficult to explain how the targets were calculated.
The use of the simplifying single table of resource percentages meant that actual performance must necessarily be assumed to be proportional to average performance. In 95% of cases this assumption is valid, but the assumption breaks down when an actual performance is far above the average, as is the case in the scenarios of Q10 and Q11 and in the record-breaking match between South Africa and Australia (March 2006) in which South Africa scored 438/9 to beat Australia’s 434 in 50 overs.
This problem has now been overcome by use of the Professional Edition and this has been in general use for most matches at the top level of the game, including ODIs, since early in 2004. It can only be operated by using a computer program.
12. How can copies of the full tables be obtained?
19. Can the method be used for Twenty20 matches?
The method is used in Twenty20 matches in exactly the same way as in 50 overs/innings games. It is no different from a standard ODI reduced to 20 overs/side by rain before the start.
The Professional Edition was introduced in 2003 to allow for the increasing prevalence of higher scoring games. In essence this distributes the run-scoring expectations more evenly throughout the innings compared with the original (Standard) Edition which is more geared to average performances. Twenty20 games also have higher run scoring rates and experience has shown that the Professional Edition works particularly well in these games.

கருத்துகள் இல்லை:

கருத்துரையிடுக